Cryoprotective properties of completely synthetic polyampholytes via reversible addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity.

نویسندگان

  • Robin Rajan
  • Minkle Jain
  • Kazuaki Matsumura
چکیده

A completely synthetic polyampholyte cryoprotectant was developed with cationic and anionic monomers by reversible addition-fragmentation chain transfer polymerization. The neutralized random polyampholyte, which had an equal composition ratio of monomers, showed high cryoprotective properties in mammalian cells. Introduction of a small amount of hydrophobic monomer enhanced cell viability after cryopreservation, indicating the importance of hydrophobicity. Leakage experiments confirmed that these polyampholytes protected the cell membrane during cryopreservation. Due to low cytotoxicity, this polyampholyte has the potential to replace the convention cryoprotective agent dimethyl sulfoxide. The present study is the first to show that we can design a polymeric cryoprotectant that will protect the cell membrane during freezing using appropriate polymerization techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UCST behavior of polyampholytes based on stoichiometric RAFT copolymerization of cationic and anionic monomers.

Polyampholytes with controlled equimolar ratio of charges were synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization of cationic and anionic monomers. The resulting charge-neutral polyampholytes exhibit upper critical solution temperature (UCST) thermoresponsive behavior in ethanol-water and methanol-water solvent mixtures based on electrostatic attraction. Fin...

متن کامل

Synthesis of Star Poly(N-vinylcarbazole) by Microwave-Assisted Reversible Addition-Fragmentation Chain Transfer

Controlled radical polymerization of N-vinylcarbazole (NVK) via microwave-assisted reversible addition-fragmentation chain transfer (RAFT) polymerization is described. As chain transfer agent, 1,3,5-benzyl tri (diethyldithiocarbamate), was used. The chain transfer agent, containing a 1.3.5-trisubstituted benzene ring as core and three dithiocarbamate functionalities attached through an intermed...

متن کامل

Synthesis of bottlebrush polymers via transfer-to and grafting-through approaches using a RAFT chain transfer agent with a ROMP-active Z-group†

A novel dithiocarbamate chain transfer agent (CTA1) with a directly polymerizable Z-group was synthesized for use in reversible addition–fragmentation chain transfer polymerization (RAFT). This CTA effectively mediated RAFT polymerization of styrenic and acrylic monomers with dispersities (Đ) < 1.08. Utilizing the polymerizable Z-group on the ω-chain end that is inherited from the RAFT process,...

متن کامل

Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition-Fragmentation Chain Transfer Polymerization

Reversible addition-fragmentation chain transfer polymerization (RAFT) was used to prepare polymer brushes grafted onto silica nanoparticles. Novel RAFT-silane agents were prepared that contained both an active RAFT moiety and a silane coupling agent. RAFT agents were anchored to silica nanoparticles by the functionalization of colloidal silica with the RAFT-silane agents. RAFT polymerizations ...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomaterials science. Polymer edition

دوره 24 15  شماره 

صفحات  -

تاریخ انتشار 2013